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A NEW FORMULATION OF THE CONSERVATION

EQUATIONS OF FLUID DYNAMICS

By M. Vinokur
Ames Research Center, NASA

Moffett Field, Calif. 94035, U.S.A.
and

Department of Mechanical Engineering, University of Santa Clara
Santa Clara, Calif. 95053, U.S.A.

SUMMARY

The computation of time-dependent flows has inspired a new, higher-

dimensional formulation of the conservation equations of fluid dynamics in

which time is treated as a fourth coordinate. The formulation is derived

for a constant-density flow, and then extended to a variable-density flow

by introducing a fifth, fictitious coordinate. This new coordinate can

also act as a source coordinate, so that external source terms can be

included. The analysis is carried out for both incompressible, stratified

flow, and compressible equilibrium flow. The results are then extended to

non-equilibrium and magnetohydrodynamic flows. Several applications of the

new formulation to the computation of time-dependent flows are discussed.



2

1. INTRODUCTION

An important concept in computational fluid dynamics is the conservation-

law form of the flow equations [1]. These are differential forms of the basic

integral relations expressing the conservation of mass, momentum, and energy.

Since the latter are valid in the presence of discontinuities, appropriate

methods of differencing the differential equations will result in the correct

jump conditions being satisfied for the computed, smeared-out discontinuities.

In Cartesian coordinates, the equations consist only of sums of derivatives -

called a strong conservation-law form [2]. One can then difference the equa-

tions so as to assure exact numerical conservation of mass, momentum, and

energy for the total flow region.

If one employs curvilinear coordinates, in order to satisfy conditions

on general boundaries, undifferentiated terms due to the derivatives of the

base vectors appear in the scalar decomposition of the momentum equation.

This weak conservation-law form [2] prevents the achievement of overall

numerical conservation of mass, momentum, and energy, and can thus lead to

loss of accuracy in "capturing" sharply curved discontinuities. To avoid

this, Anderson, Preiser, and Rubin [3] introduced Cartesian base vectors and

achieved a scalar decomposition in the strong conservation-law form. A

similar idea was used by MacCormack and Paullay [4], although they employed

the integral formulation of the equations. Calculations using this latter

formulation have been carried out by Rizzi and Inouye [5] for blunt-body

flows, and by Rizzi, Klavins, and MacCormack [6] for supersonic flows.

Recently, the author [2] proposed a-new, simpler, local scalar decomposition

in the strong conservation-law form, using the curvilinear base vectors at

the fixed, computational mesh points.

There are two important classes of time-dependent problems in which it

is useful to introduce new independent variables which depend on both time
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and the spatial coordinates. One class involves time-varying boundaries such

as flexible walls, detached shock waves,-jet boundaries, etc. If the un-

steady motion of these boundaries is coupled strongly to the time-dependent

phenomena being studied, coordinate transformations making these boundaries

coordinate surfaces will greatly simplify the satisfying of boundary condi-

tions. The other class of problems is flow past (or inside) a rigid body

undergoing arbitrary translational or rotational motion. It is then useful

to employ a non-inertial reference frame fixed with respect to the body.

In both cases, the time-dependent coordinate transformations result in

undifferentiated "source" terms and a weak conservation law. The situation

here is analogous to that discussed in the previous paragraph, where the

replacement of Cartesian by curvilinear coordinates led to a weak conserva-

tion law. It is therefore natural to seek a strong conservation-law form of

the equations resulting from the time-dependent coordinate transformations,

analogous to the strong conservation-law form derived by the author for

curvilinear coordinates. If one does, one quickly finds that one must

introduce a base vector associated with the time coordinate, and that the

continuity and energy equations must be coupled with the momentum equation

in a single conservation law. The analogy would then also require a fifth,

fictitious coordinate (and corresponding base vector). The time-dependent

coordinate transformation then becomes a simple coordinate transformation

in the higher-dimensional space, and the five equations in strong conserva-

tion form are given by the local scalar decomposition of a single vector

equation.

The author has developed a higher-dimensional formulation of the

conservation equations of fluid dynamics, motivated by the above considera-

tions, and has applied it in Ref. [2] to extend the strong-conservation form

of the equations to time-dependent coordinate transformations. The purpose
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of the present paper is twofold. One is to give a detailed derivation of the

formulation (not presented in Ref. [2]),-and where possible, to give physical

justification for the mathematical assumptions that are made. The other

purpose is to generalize the results to a wider class of flow equations, in

the hope that the new formulation will find other fields of application.

While the primary application is to generalized coordinates in compres-

sible flow, in order to present the ideas as simply as possible the formulation

is first derived in 2 for orthogonal curvilinear coordinates in a

constant-density flow. The flow equations are shown to result from a single

four-dimensional equation in Euclidean space-time. The components in the

spatial direction yield the momentum equation, while the component in the

time direction gives the continuity equation. (By contrast, in the space-

time of special relativity, time components are related to an energy equation).

A physical interpretation of the time component of velocity is proposed.

Finally, an examination of steady-state flow shows that the continuity equation

can still be considered as the component of a four-dimensional equation in.a

fourth direction, even though the fourth coordinate is ignorable.

The ideas in the previous sentence are used to consider variable-density

flow in 3. An ignorable, fictitious fifth coordinate is introduced,

whose directions yield the additional conservation equation which is required.

This coordinate can also be employed to include real source terms in the

analysis. Both compressible equilibrium flow and incompressible stratified

flow are treated. In 44 the analysis is extended to non-equilibrium

and magnetohydrodynamic flows. The restriction to orthogonal coordinates

is also removed in this section, where results are given in general, curvi-

linear coordinates. The discussion in 5 centers on the closure

problem of completing the set of conservation equations by auxiliary



equations. As an illustration of the use of the formulation presented in

this paper, this section concludes with a derivation of the scalar decomposi-

tion in strong conservation-law form of the ideal gas equations for a

general class of time-dependent coordinate transformations. A brief

discussion of the conservation laws in a non-inertial reference frame is

also presented.

2. CONSERVATION EQUATION FOR CONSTANT-DENSITY FLOW

2.1 Three-Dimensional Formulation

Consider the non-relativistic motion of a fluid with constant density

p. The continuity equation

div (p) = 0 (2.1)

expresses the conservation of mass, where u is the velocity vector. The

momentum equation relates the time rate of change of momentum per unit

volume to the net convection of momentum and the net force acting on the

fluid contained in that volume. The surface force can be expressed as the

divergence of a stress tensor. If the pressure p characterizes the state

of stress existing in a fluid in uniform motion, the stress tensor for a

fluid in non-uniform motion can be written as
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S -pI ,

where the symmetric tensor S is called the extra stress tensor or viscous

stress tensor, and I is the identity tensor. In an inertial reference

frame, the external body force in the absence of electromagnetic effects

is due to the gravity. (An external force due to a magnetic field is dis-

cussed in 4.2.) Introducing the gravitational potential 4, the body force

per unit mass is

f = - grad 4 = - div (I1) . (2.2)

If one defines a generalized stress tensor

PES - (p + P) I , (2.3)

and the convection tensor

CE pu u (2.4)

the vector conservation-law form of the momentum equation can be written as

t (pu) + div T = 0 , (2.5)

where the flow tensor T is defined as

T - C - P . (2.6)

In Cartesian coordinates xl, x2 , x3, equations (2.1) and (2.5) are

written as

-- (pu) + -2 (pu2)+ .- 3 (pu3)= 0 , (2.7)

aT aT aTa IT, T12 IT13
a(pu) + 11 + 2 + = 0 , (2.8a)

xt 1 3x x2 Dx3
aT T aT

a -(pu 2  21 22 23 = , (2.8b)
1 2 3

aT aT aTa T31 T32 T33
- (Pu3+ + + = 0 . (2.8c)
t 3  1  2 3

As written, the continuity equation and the three components of the momentum

equation all consist of sums of derivatives - called a strong conservation-law

form [2]. The equivalence in structure of these four equations is

only valid in Cartesian coordinates. In curvilinear, orthogonal coordinates,
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--q -3

with scale factors h , , h2' h3 , and unit base vectors 
el, , e e3, equations

(2.1) and (2.5) become

S- (h 2 h 3 pu 1  + - (hh 3 Pu 2  + (hh 2 pu 3 ) = , (2.9)

3 3 3 3

h 3 11h2h3j= 1 2 2hlh3j T 3 T = 3S(h 2 h 3 Te.) + -(h 1 3  T. ej) + 7-(hlh 2 E T 3 ) = 0

j= 1 j= 2 j= 3 = 3

(2.10)

The decomposition of (2.10) into three scalar equations 
would introduce un-

differentiated terms (weak conservation-law form [2]) due to the terms

ae/Bx i . Actually, a natural scalar decomposition of (2.10) in 
the strong

form is possible [2]. Since this paper is concerned with the formulation

of the conservation equations as a single vector equation in a higher-

dimensional space, the vector form of the momentum conservation 
law (2.10)

will be retained. The continuity equation (2.9), which is a scalar

equation, is thus clearly distinct in 
character from the momentum equation.

2.2 Four-dimensional formulation

The time derivative in (2.10) has an appearance similar to that of 
the

spatial derivatives. This suggests that the momentum equation can be put

completely in divergence form if one considers 
time as a fourth coordinate

in a four-dimensional space. Letting x4  t, consider the equation

div 4 T = 0 ,(2.11)

where T is now a four-dimensional flow tensor. In terms of the components

of T, equation (2.11) can be written 
as

21 h3 o e=l 2hlh3h4 1 + 3 " T 3=i
4 4 4

+ - hlh Ta 4 e)= 0. (2.12)
X4(hlh 3 =I
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Greek indexes will indicate quantities defined over the four-dimensional space,

while Latin indexes will be reserved for quantities defined over the physical,

three-dimensional space. The independence of time and physical space leads to

the conditions

S4 # ei = De./ax4 = 0 (i/x4 = 0 (i =1 to 3). (2.13)

It follows that e4 is constant, so that x4 is a straight coordinate, and that

h4 is at most a function of x4 . One can thus uncouple the equation for e4 in

(2.12). The equation for the remaining components is

3 3

7 (h2h3  Tjle ) + 3(h 1h3 E Tj 2e
1 j=1 2 j=1

3 3
+ -(h1 h 2 E Tj3ej) + -{ ehlh2h3 j4j) = 0 (2.14)

3 j=l 4 4 3 =1

Comparing (2.14) with (2.10), one obtains agreement if

Tj4 = pujh 4  (j=l to 3), (2.15)

where h4 is now constant.

Since the three-dimensional flow tensor has symmetric components Tij,

it is reasonable to assume that the components of the four-dimensional flow

tensor, Ta , are also symmetric. Therefore let

T4j = ph 4 u (j = 1 to 3). (2.16)

The e4 component of (2.12) thus becomes

a hlh2h3 aT44 0 (.
-(h 2 h 3 pul) + (hlh3 u 2) + (hh 2 pu 3  2 x = 0, (2.17)
1 2 3 h 4

One quickly recognizes (2.17) as the continuity equation (2.9), provided

that
aT44/ax 4 = 0, (2.18)

Conditions (2.15), (2.16) and (2.18) can be shown to follow logically

from the assumption that (2.4) defines a four-dimensional convection tensor
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, with the fourtktime) component of the four-dimensional velocity- satisfying

u4 =.h4, (2.19)

Equations (2.15), (2.16) and (2.18) can then be replaced by the relation

Ta4 = T4a Ca4 (a = 1 to 4), (2.20)

If (2.6) is assumed to be valid in the four-dimensional space, it follows

that

Pa4 
= P4  = 0 (a = 1 to 4), (2.21)

Relation (2.19) is made plausible by considering the total derivative as a

four-dimensional convective derivative, i.e.,

D 3 u 4 ua (2.22)

4 j=l j j a=l a a

Alternatively, extending the definition of velocity as the total derivative

of the position vector to four dimensions, one obtains

Dx ax 3 u. Dx
u =h a = h a Ta + E a (a = 1 to 4), (2.23)

4Dt j=l j j

Equation (2.19) follows from (2.23) by setting a = 4.

The analysis, so far, does not provide a natural constant velocity to

assign to u4. It can be obtained from a different interpretation of the

velocity. In terms of the conservation laws, mass and momentum are considered

fundamental. The velocity can then be defined as the specific momentum, or

momentum per unit mass. The components of the four-dimensional conservation

equation in the three spatial directions give the conservation of momentum,

while the component in the fourth (time) direction has been shown to yield

the continuity equation expressing the conservation of mass. It is thus

reasonable to define the fourth (time) component of velocity as the specific

mass, or unity.

In summary, it is natural to introduce time as the fourth, straight

coordinate in a four-dimensional Euclidean space, with the scale factor
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and velocity component in the fourth direction satisfying

u4 = h4 = I. (2.24)

The conservation of mass and momentum are then embodied in the single four-

dimensional vector equation

div 4 T = 0 (2.11)

with the four-dimensional flow tensor T given by

T = C - P (2.25)

where the four-dimensional convection tensor components are

C8a = puau8  (Ca, = 1 to'4), (2.26)

and the four-dimensional generalized stress tensor components are

S1 1ll-- 12 . 13 0

S21 S22-p-p S23 0

P8 S31 S32 S3 3 -p-p 0 (2.27)

0 0 0 0

The Sij in (2.27) are components of the three-dimensional extra stress
-j

tensor S. Thus, for a constant density flow, a single vector equation

expresses the conservation of mass and momentum. It is because the time

coordinate is always straight, and orthogonal to the spatial coordinates,

that the component in the time direction can be uncoupled to produce a scalar

equation for the conservation of mass. Since the spatial coordinates can

be curved, the momentum equation in conservation-law (or divergence) form

must in general remain a vector equation.

2.3 Steady-State Flow

An important special case is that of steady-state flow, in which x4 is

an ignorable coordinate, i.e.,

a/ax 4 = 0. (2.28)



There is a fundamental difference between this case and that in which a spatial

coordinate is ignorable. The simplest example of the latter is plane flow,

in which the velocity component in the ignorable direction is zero. The

component of the momentum equation in the ignorable direction then vanishes

identically. The number of equations is reduced by one, so that the remain-

ing equations can be embodied in a single three-dimensional (two space and

one time) vector equation for a three-dimensional flow tensor.

In steady-state flow, the velocity component u4 in the ignorable

direction does not vanish, but remains equal to onb. Therefore, the

component of the four-dimensional conservation equation in the ignorable

direction does not vanish, but actually remains unchanged. Only in the

spatial components are the time derivative terms absent. While the number

of independent variables has been reduced by one, the number of equations

remains the same. One must still use a four-dimensional formulation to

describe the conservation laws. While the coordinate is now a fictitious,

ignorable coordinate from the steady-state viewpoint, the direction of the

fourth coordinate is very real, since it gives rise to the continuity

equation. It is appropriate therefore to refer to the'x4 coordinate as the

time coordinate, but to think of the direction of the fourth coordinate as

the mass direction, since it is connected with the conservation of mass.

3. CONSERVATION EQUATIONS FOR VARIABLE-DENSITY FLOW

3.1 General Formulation

The continuity equation for variable-density flow is

- + div (p) = 0. (3.1)

In the momentum equation, the external body force per unit volume, pf, can

no longer be put in divergence form, even if ~is conservative. It there-

fore cannot be included as part of a generalized stress tensor, but must
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appear as an external source term. The momentum equation is thus written

as

t- (pu) + div - pf = 0, (3.2)

where (2.4) and (2.6) are still valid, but P is defined as

P S - pI. (3.3)

The body force is left unspecified. In addition to a gravitational force,

it can also include the fictitious force due to the employment of a non-

inertial reference frame. In orthogonal curvilinear coordinates, (3.1) and

(3.2) are written as

a(hh2h + a-(h2h3pu1) + 2-(hlh3pu2  + -(hlh 2pu3) = 0, (3.4)
.hh 2 3 2 )Plh) + 1 2 3 )1 2 3

3 3 3
h2h3 pu e) + (h2h 3 .E Tjle ) hlh3E T2e)

3j= 1 + j=l 2 j=1

3 3

3(hlh2 L Tj3e ) - hh2hjl fe = 0, (3.5)

The presence of the variable density requires an additional conservation

equation to complete the system. The next two sections will treat two dif-

ferent forms of this additional equation. The results obtained in this

section will be independent of the specific form of the additional equation.

The discussion of steady-state flow in 2.3 showed that a scalar conservation

equation (in this case the continuity equation) can be associated with a

coordinate direction, even though the coordinate itself is ignorable. This

suggests that the additional equation be associated with the direction of a

new, ignorable coordinate x5. It thus must have the property that

a/ax5 = 0 (3.6)

for all physical variables. It is easy to show that e5 must be constant,

and orthogonal to all the other base vectors. Without any loss of generality,

one can let h5 = 1. (3.7)
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The expression for u5 depends on the identity of the additional equation.

In the five-dimensional conservation equation

div 5 i= 0, (3.8)

the equations for e4 and e5 can be uncoupled, leaving as the remaining

equation

3 3 3

axIhh3 Tjle) x+ hlh31 h T 2ej) + -hlh 2 Tj3e)
1 j=1 2 3j= 3 j=l

a 3 a 3
+ h2h 3 E Tj4e ) + -(h1h2h3  Tj e) = 0. (3.9)

4=1 5 j=1

In comparing (3.9) with (3.5), one notes that the source term can be formally

generated if one lets Tj5 =-pfjx s . Thus the x5 coordinate can be considered

a source coordinate. This role for the x5 coordinate seems appropriate, since

the same phenomenon (variable density) requiring an additional conservation

equation, and an associated new coordinate direction, also necessitates a

body force term to be treated as an external source of momentum. Now Tj5 is

undefined within an arbitrary additive fuction of xl, x2, x3, x4. Generali-

zing the concept of the convection tensor to five dimensions, one would

expect the term puju 5 . In order to satisfy the additional conservation

equation, an additional arbitrary functiongj (xl, x2 , x3, x4 ) will be

necessary. Therefore, let

Tj5 = pu u5 - pfjx 5 + gj (j = 1 to 3), (3.10)

where the gj are as yet unspecified functions of xl, x2 , x3, x4 . With Tj4

puju 4 = puj, as in 2.2, equation (3.9) is in agreement with the momentum

equation (3.5).

If one generalizes (2.20) to five dimensions, i.e., lets

T4a = pu4ua = pua  (a = 1 to 5) (3.11)

then the e4 component of (3.8) becomes

- (h2h3pui -(hlh 3 pu2) t a-hlh2 pu 3  ti-l(h2h 3p) = 0. (3.12)
1 2 3 4

This is seen to be identical to the variable-density continuity equation (3.4).
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Assuming that the five-dimensional flow tensor is symmetric, and letting

3
g = g. e. (3.13)

j=1

the 5 component of (3.8) takes the form

di '55
div (pu5u) - x5 div (pf) + div g + - (pu5) + -- 0. (3.14)

4 5

Equation (3.14) must be identified with the additional conservation equation.

The next two sections will consider two such equations of technical interest.

3.2 Incompressible Stratified Flow

One case of a variable-density flow important in oceanography is that

of an incompressible, but stratified fluid. The incompressibility condition

is stated as

div u = 0 (3.15)

which is equivalent to the conservation of volume. Following the interpretation

of a velocity component as the specific value of the conserved quantity in the

corresponding component of the conservation equation, it follows that u5 should

be defined as the specific volume, i.e.,

u5 = 1/p, (3.16)

Equation (3.14) can then be reduced to (3.15) if g is set equal to zero, and

if one defines T55 as

2 2T55= pu5 + div (pf) x5/2 . (3.17)

The five-dimensional flow tensor T appearing in (3.8) is thus given by

T = C -P (3.18)

where the convection and generalized stress tensors are defined by

C 8 = p u u (ca, = 1 to 5)) (3.19)



and
S11 - p S12 S13 0 Pflx 5

-21 S22 - p $23 0 Pf2x5

Pa =3 S31 S32 S33 - p 0 pf3x5  (3.20)

0 0 0 0 0

Pflx 5  pf2x5  pf 3 x5  0 - div (p ) x5/2

together with equations (2.24), (3.7) and (3.16).

3.3 Compressible Equilibrium Flow

The more common case of a variable-density flow is that of a compres-

sible gas. If the flow is in equilibrium, the energy equation is the only

additional conservation equation. Let e be the specific internal energy, so

that the total energy per unit volume is

e = p [E + 2( (u + u2 + u3)] (3.21)

Define a heat-flux vector to include both conduction and thermal radiation.

For completeness, let 6 be the net rate of addition of energy per unit volume

from a non-thermal source, such as a nuclear reaction. The conservation of

energy can then be expressed as

t + div (eu + pu - u*S + q) - u*f - = 0. (3.22)

The velocity component u5 defined by this conservation law is

1 2 2 2
u5 = e/p = E + - (U1 + u2 + u3). (3.23)

Equation (3.14) reduces to (3.22) if one defines

-4 -2 * .-M -A
g = pu - u*S + q) (3.24)

and 2 2
T55 = pu5 + div (pf) x5/2 - (pu*f + 6) x . (3.25)

The five-dimensional formulation of compressible, equilibrium flow is thus

defined by (3.8), (3.18), (3.19), (2.24), (3.7), and (3.23), with PaB given

by
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S11 - p S12 S13 0 klUkSkl - PUl - q pfx 5

S21 S22 - S23 0 klukSk2 - PU2 - q2 + pf 2x 5

B =  31 S32 S33 - 0 k=lukSk3 - PU3 - 3 + f3x5  (3.26)

0 0 0 0 .0

'4 2
Pl 5  p2 5  P3 5  0 (itlukfk+ 6) x5 - div(pf) x 5 /2

This completes the formulation of the conservation equations for

variable-density flow. The results will be generalized in § 4.

4. GENERALIZATIONS

4.1 Non-Equilibrium Flow

If the flow of a compressible gas is out of equilibrium, in general one

must introduce n independent non-equilibrium variables to specify the state of

the gas. Let such a variable be designated by ac, where av represents the mass

fraction of species v, or the specific internal energy (per mass of mixture) of

the vth internal mode of some species. Equations (3.1), (3.2), and (3.22) are

still valid, provided that i is the global velocity of the mixture, and the

definitions of E and are appropriately modified to take into account the

internal molecular structures and interdiffusion of the various species.

The rate equation for non-equilibrium variable a can be written in

conservation form as

.a(pa) -Ad
at + div [pa (u + u )] - p dr = 0 (v = 6 to n + 5). (4.1)

Here d is the diffusion velocity for a variable a which pertains to a

species in a multi-component mixture, and &V is the net rate of production

of a due to internal processes. One can then introduce a fictitious,

ignorable coordinate xV for each non-equilibrium variable a, and again

define
hV = 1 (v = 6 to n + 5). (4.2)
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The velocity component u. defined by (4.1) is

u( = aV (v = 6 to n + 5). (4.3)

The e component of the (n + 5)-dimensional conservation law

div T = 0 (4.4)

is

v4  T 5  n+5. T

+ .4 5 + = 0 (v 6 to n + 5), (4.5)
x4  x5  =6

In orthogonal coordinates, equation (4.1) is written as

(pa) 1 d d
+t h~123 ax[h2h3P (ul + U 3 [hlhsgp(u 2 + uv2)

+ [hlh 2 pa (u3 + ud3 - P V 0 (v 6 to n + 5). (4.6)

If one again defines

T = P u u - Pv (v = 6 to n + 5, 8 = 1 to n + 5)) (4.7)

then the following relations follow from a comparison of (4.5) and (4.6):

d
P . = P. =-P u . (j = 1 to 3)

PV5 = P5v P &Vx5 (v = 6 to n + 5),

P = P = 0 (( # 1,2,3,5) (4.8)

4.2 Magnetohydrodynamic Flow

If the fluid is electrically conducting, it is subject to external

forces and energy transfer due to an electromagnetic field. For non-

relativistic fluid motion, displacement currents and charge accumulation

can be neglected, and Maxwell's equations are
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div b = 0) (4.9)

-+ curl e = 0) (4.10)

curl b - Pj = 0) (4.11)

where b, e, j are the magnetic induction, electric field, and current density,

respectively, and P is the constant magnetic permeability of a vacuum.

The external force per unit volume, j ,b, can be rewritten, with the

aid of (4.9) and (4.11), as

^ % 1 -4 "! 1 d b I
j -b = - curl bX)b = -div (bb - 2 I) (4.12)

The energy transferred to the fluid per unit volume from the electromagnetic

field, j-e, becomes

1 1 div 1 ( (4.13)
j*e = 5-curl b-e = - div (e ) t b ), (4.13)

The effect of the electromagnetic field is to add to the five-dimensional

generalized stress tensor Pa8 the electromagnetic generalized stress tensor Pm

defined by

2 32 1 2
b1 - CkZbk blb2 b2e 0 be 3e2

2k=k 12 13 23 32

2 1 21
b~b1  b Z b b 2b 0 b e' - e

S1 22 b2e (4.14)

kk=0 0 0 0 - -l bk

132
be -be be -e b 2b2e3 - b3e2 b3el - ble3 ble 2 - b2el 2Ikl k

Note that the ten, independent non-zero components of pm can be identified

with the components of the four-dimensional, symmetric Maxwell stress-energy

tensor defined in the relativistic formulation of electrodynamics.
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4.3 General Coordinates

For many important applications, one must use coordinate systems more

general than orthogonal coordinates. Let the physical space be described by

general, curvilinear coordinates '-, x', x,:. This defines a system of covariant

base vectors i = ar/ax , where r is the position vector. The covariant

components of the metric tensor are then given by gij = gi'g The formulation

of the conservation equations in general coordinates will be illustrated by

considering compressible equilibrium flow. One therefore introduces a straight,

fourth coordinate x4 = t, and a fictitious, ignorabl'e, straight, source

coordinate x5 . The corresponding constant covariant base vectors, which are of

unit length, are g4 and 5. The covariant components of the five-dimensional

metric tensor arethus given by

11 12 g13  0 0

g21 22 23 0 0

g8= 31  g3 2 - g33  0 0 . (4.15)

0 0 0 .1 0

0 0 0 0 1

Let the determinant of.ga8 be designated by g = Iga = Igij I

The five-dimensional conservation law

div5 T = 0 (3.8)

can be written in component form as

-a (v Ta Z) = 0, (4.16)
ax

where summation over repeated indexes is assumed, Greek indexes being summed

from one to five, while Latin indexes are summed from one to three. The

contravariant components of the flow tensor, TaS, can be expressed as
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Ta = Ca p-B (a,B = 1 to 5) (4.17)

where the convection tensor is defined by

Ca E puauB  (a, = 1 to 5)) (4.18)

with
u = 1) (4.19)

and 1
u = e/p = + - gi u(4.20)

Here u (i = 1 to 3) are the contravariant components of the real, physical

velocity. The contravariant components of the five-dimensional generalized

stress tensor take the form

11 11 12 12 13 13 jSil 1 11 f 5

S - pg S -12_ pg S13 - pg 0 giuSl - pu q + pf x

21 21 22  22  $23 23 0 giuSi2 2  2 + pf2x5

pa = 31_ 31 32 32 33 33 ujSi3 pu3 3 f3x5
- pg S-pg S - pg 0 giju -pu -q + pfx

0 0 0 0 0

5 2
P15 p25  p35  0 (pgiju f + 6)x5 - 1 ' i (x 2

(4.21)

where gij, Si , q , fi are the contravariant components of the metric tensor, the

extra stress tensor, the heat-flux vector, and the external body force per unit

mass, respectively.

The extension to general coordinates of other forms of the conservation

equation is carried out in an analogous manner.

5. DISCUSSION

The multi-dimensional conservation equations (2.11), (3.8), or (4.4) do

not constitute a complete set of equations. These equations involve two classes

of dependent variables. One class consists of the primary variables. For a

compressible gas, these are ui, p, and e. For non-equilibrium flow they also
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include y. For an incompressible fluid, E must be replaced by P. The other

class consists of the secondary variables. The latter include Sij, qi' fi (or
d

d), k, and p (for a compressible gas). For non-equilibrium flow, u i and &

must also be introduced, while for magnetohydrodynamic flow the field component

ei and bi appear as secondary variables. All of these secondary variables must

be related to the primary variables in order to obtain a complete system of

equations.

The relations between the two classes of variables may involve the intro-

duction of a third class of intermediate variables. Expressions for the heat-

flux vector components qi normally involve the temperature. The radiant heat-

flux is most generally calculated in terms of the specific intensity. The

electromagnetic field components are calculated from Maxwell's equations, which

involve the current density vector components j i. In addition, particular forms

of constitutive equations for the extra stress tensor, heat-flux vector, dif-

fusion velocity, and current density require the introduction of various trans-

port coefficients such as viscosity coefficients, diffusion coefficients, thermal

conductivities, electrical conductivities, absorption coefficients, etc.

The particular forms that constitutive equations take, as well as

expressions for equations of state, transport coefficients, and the internal

production terms & ,are all based on assumed models for a given fluid. These

models lie outside the scope of the basic formulation of the conservation

equations for the fluid motion. One can, however, categorize these models as

to their effect on the completeness of the set of conservation equations. For

a simple fluid model the constitutive equations give the secondary variables

as explicit functions of the primary and intermediate variables, and their

derivatives. The multi-dimensional conservation equations then constitute a

complete set of differential equations (supplemented by algebraic relations
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for the intermediate variables) in the absence of electromagnetic fields, and

in the presence of thermal radiation treated within the Rosseland diffusion or

the emission-dominated approximation. (In the latter case, the divergence of

the radiant heat-flux can be treated as an external energy source term, 6.)

For a complex fluid model, the expressions for the secondary variables

could involve integrals of the primary variables, or require the introduction

of new variables which are given by auxiliary equations. Thermal radiation

generally requires the solution of the radiative transfer equation. It is

coupled to the flow equations via the absorption, epission, and scattering

coefficients. The presence of electromagnetic fields requires the solution of

Maxwell's equations, which are coupled to the flow equations via a generalized

Ohm's law. In all of these cases, the conservation equations form only part

of the complete system of equations describing the physical situation.

As an example of the application of the multi-dimensional formulation,

consider the compressible equilibrium flow equations written in general

coordinates (44.3). The most general coordinate transformation in-

volving the three physical coordinates and time is

a' a' 1 2 3 4 5' 5x = x (x ,x ,x ,x ) .x = x (a' =1 to 4) (5.1)

where x is the new time like coordinate. In order to achieve a simple

form of scalar decomposition, base vectors and tensor components will be

defined with respect to the unprimed coordinate system. The transformed

Eq. (4.16) thus becomes

a (g x T g) = O. (5.2)
axa '  ax

Since 4 and g5 are constant, one obtains immediately the transformed

continuity and energy equations
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2- x ( i x 8) = (TV = 4,5) (5.3)

ax ax
- 1i' 2' 3'

The remaining base vectors gi can be functions of x 
, x , x and

x4'. In any finite-difference numerical procedure, all 
unknown variables

1' 2' 3' 4'
are defined at discrete points fixed in x , x ,x ,x4'space. Let the

subscript P' denote a quantity evaluated at one of 
these points. A

subscript a' appearing to the left of a quantity 
will denote variation with

xC' only, the other coordinates being held fixed at their values at 
point

P'. Introduce unit base vectors by

( i) -i/g (unsummed) (5.4)

In any finite-difference algorithm applied to (5.2) at point P', the unit

base vector g() at a point other than P', appearing in the x derivative

term, can be expressed as

- (k) (2 (5.5)
a'g(j) = a' (j) (k)P' .

The expansion coefficients aY(j) are known functions of x 
', determined by

the original coordinate system and the transformation (5.1). The scalar

decomposition of the transformed momentum equation in strong conservation

form becomes

a- , ax o  = () jgT ) 0 (k = 1 to 3) , (5.6)

ax aTx (j) jj

If one specialized (5.3) and (5.6) to an ideal gas (S =q = f = = 0), and

introduces physical contravariant velocity components by

u(i) = V u (unsummed), (5.7)

one obtains the following set of strong conservation equations:

a ax4  ax4  u a ax u(j)]

9x41 ax x ax] (5.8)
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...(k) ax 4 1 j ax 4Pu () +i ax (min)- j
4 g 4' y(j) a (j

ax (j1ax)
4' m

+ _- ' {(k) [x' - -(" ) + axm  U + P gjm)]} = 0

(k = 1 to 3),

h ot 4' a 4 e ' (ep(j)
)it

+ a i' a' ax (e+p)u ( j )ate~e +x' ] } = o.
ax ax y'~

Further details and specializations of these results may be found in

Ref. [2].

Another application of the higher-dimensional formulation is the

calculation of fluid motion in a non-inertial reference frame fixed with

respect to a moving body. In the conventional approach, external body force

terms appear in the momentum equation, and an external work term is

introduced in the energy equation.. One can show that the change in

reference frame can be treated as a coordinate transformation in a higher-

dimensional space, with the external source terms arising from the

curvature of the new time coordinate. Using a method analogous to the

one just outlined, one can then obtain a scalar decomposition of the

equations in strong conservation-law form. The details will appear in

a future publication.
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